跳转至

硬质与火炬

哎哎哎:# t0]https://www.geeksforgeeks.orgas-vs-pytorch/

KerasPyTorch 是两个最强大的开源机器学习库。

Keras 是一个基于 python 的开源库,用于深度学习(用于神经网络)。它可以运行在 TensorFlow、微软 CNTK 或 antano 之上。理解和使用非常简单,适合快速实验。Keras 模型既可以在中央处理器上运行,也可以在图形处理器上运行。

PyTorch 是一个开源的机器学习库,由脸书的 AI 研究小组开发。它可以与 Python 和 C++集成。它之所以受欢迎,是因为它高效的内存使用和轻松调试神经网络的能力。

让我们看看 Keras 和 PyTorch 的区别。

s。不 PyTorch
1。 Keras was released in March 2015. and PyTorch was released in October 2016.
2。 Keras has a high-level API. The air pollution index of PyTorch is lower.
3。 The speed of Karas is relatively slow. The speed of PyTorch is higher than that of Keras, which is suitable for high performance.
4。 Keras is simple in structure, more readable and more convenient to use. However, because of its complex architecture, PyTorch has very low readability.
5。 Keras' community support is weak. While PyTorch has stronger community support.
6。 Keras is mostly used in small data sets because of its slow speed. While PyTorch is the first choice for large data sets and high performance.
7。 It is difficult to debug in Keras due to the existence of calculation garbage. Debugging in PyTorch is easier and faster.
8。 Keras provides static calculation diagram. And PyTorch provides dynamic calculation chart.
9。 The backend of Keras includes TensorFlow, antano and Microsoft CNTK backend. But PyTorch has no back-end implementation.


回到顶部